

OPEN SCIENCE at the ALLEN INSTITUTE FOR NEURAL DYNAMICS

11/14/2022

- Mission & data
- Open science and data sharing

Allen Institute for Neural Dynamics - Mission

Discover how the brain's neurons produce our emotions, memories and actions.

Answers will be in terms of neural activity in <u>defined neuron types</u> interacting across the <u>whole brain and body</u>.

This requires <u>next-generation neurotechnologies</u>.

Knowledge, data, and tools will be <u>widely shared</u>, to facilitate science elsewhere and to support the development of therapies for brain disorders.

Structure and connectivity → neural circuits

AIND organization: **Groups**

Neural dynamics **Ephys**

Neural dynamics Ophys

Mapping brain-wide neural circuits

Machine-learning and theory

Instrumentation

Scientific computing

David Feng

Project mgt & administration

alleninstitute.org

Sharing:

Tools, data, code, research findings

Data re-use in neuroscience: MRI

OpenNeuro datasets

Reuses of OpenNeuro datasets

Markiewiscz et al., 2021

Data re-use: cellular neurophysiology

CRCNS.org

Data reused in dozens of studies focused on the interpretation of calcium imaging data

Allen Brain Observatory / DANDI

Moving data is inefficient

Bringing the community to data in the public cloud is more efficient and powerful

Sharing: Tools, data, code, research findings

Public cloud data lake architecture

Goals:

- Reproducibility
- Flexibility
- Collaboration
- Dissemination
- Inclusion

Challenges

- Data rate, size (> 500 TB/w, 2 GB/s)
- Metadata complexity
- Rate of change (science, tools, standards)
- Cutting edge hardware, software

Approach:

- Minimize on-prem footprint
- Bring scientists to cloud data pipelines
- Accelerate, simplify data ingestion
- All data shareable the day of acquisition
- Use scientist-friendly cloud tools
- If possible buy/use, don't build

Acquisition (S) SLIMS

Manage the labs

electronic lab notebooks workflow management separate schemas per lab

Data Transfer

compress + upload

Data Lake

cloud bucket + CODE OCEAN

Self-describing file sets

one per acquisition or analysis
JSON metadata validation
searchable via metadata

Ad-hoc Analysis

CODE OCEAN

Scalable, reproducible

no-code docker, git elastic, on-demand hardware

Analysis Pipelines

Automated, reproducible

results go back into lake launched on demand

Analysis Views

Data Summaries

easy to build (avoid SQL) updated automatically

Progress

- Compression → save \$
- Upload throughput
 - Multi-node SLURM jobs
 - o 1-2GBps
- Metadata schema
 - Inspiration from NWB, DANDI, HCA, BIDS
 - Need more!
 - Database agnostic, versioned

Pain Points

- Poor support for cloud-friendly formats
 - e.g. OME-Zarr, NWB-Zarr
- High-value desktop applications not supported
 - o e.g. imagej, napari, phy
- Metadata standardization still very limited
- Cloud archives prefer polished data
- Expectation of free download/compute

Is Open Science Free?

Libre ("free speech") != Gratis ("free beer")

Academia expects both:

Download any data locally

2. Run any analysis (maybe on HPC)

Large, hidden, subsidized costs (network, storage, compute, admin)

Cloud pay-as-you-go makes costs very clear

Science must be Libre, but it is never Gratis.

The cloud is a better model, but who pays?

Questions?